Medical Imaging Questions – OCR A Level Physics Praneel Ph

Philipsics

Praineel Philipsics ray. (1. State what is meant by an X-ray. (P)

Working and Answer:

aineel Philis An X-ray is a high-frequency electromagnetic wave used in medical imaging.

raineel Philippins 2. What is meant by attenuation of X-rays? (P)

Working and Answer:

It is the reduction in intensity of X-ray radiation as it passes through matter.

raineel Pinysics

ineel Philipsics

Physics

Aneel Philes

raineel Philis

3. Give one use of ultrasound in medical imaging. (P)

Working and Answer:

To produce images of soft tissues such as in prenatal scanning.

eel Pinysics

ALLO CALLES

4. State what is meant by the acoustic impedance of a material. (P)

Working and Answer:

It is the product of the density and speed of sound in the material.

 ${f 5.}$ Explain why a gel is used in ultrasound imaging. ${f (PP)}$

Working and Answer:

To eliminate air gaps and reduce reflection due to impedance mismatch between the transducer and skin.

6. Describe the role of computed tomography (CT) in medical imaging. (PP)

Working and Answer:

It combines multiple X-ray images taken from different angles to produce cross-sectional images.

7. Define half-value thickness in X-ray attenuation. (PP)

Working and Answer:

The thickness of material required to reduce the X-ray intensity to half its original value.

8. Write the equation for X-ray attenuation. (PP)

Working and Answer:

$$I = I_0 e^{-\mu x}$$

where μ is the attenuation coefficient, x is thickness.

9. An X-ray beam with an initial intensity of $200 \,\mathrm{W/m^2}$ passes through 5 cm of tissue with $\mu = 0.15 \,\mathrm{cm^{-1}}$. Calculate the transmitted intensity. (PPP)

Working and Answer:

$$I = 200 \times e^{-0.15 \times 5} = 200 \times e^{-0.75} \approx 94.3 \,\text{W/m}^2$$

10. Calculate the half-value thickness of a material with attenuation coefficient $\mu=0.12\,{\rm cm}^{-1}$. (PPP) $x_{1/2}=\frac{\ln 2}{\mu}=\frac{0.693}{0.12}\approx 5.78\,{\rm cm}$ $x_{1/2} = \frac{\ln 2}{\mu} = \frac{0.693}{0.12} \approx 5.78 \, \mathrm{cm}$

an el Phisics

$$x_{1/2} = \frac{\ln 2}{\mu} = \frac{0.693}{0.12} \approx 5.78 \,\mathrm{cm}$$

P. F. O. F.

Praincel Philipsics

Praineel Philips 11. Ultrasound of frequency 5 MHz is used. If the speed of sound in tissue is $1.5\times10^3\,\mathrm{m/s}$, calculate the wavelength. (PPP)

aineel Phrysics

Praineel Physics

Working and Answer:
$$\lambda = \frac{v}{f} = \frac{1.5 \times 10^3}{5 \times 10^6} = 3.0 \times 10^{-4} \, \mathrm{m}$$

Praincel Philip

Physic

Praincel Philipsics

R. R. atheel.

Praineel Philis 12. A boundary between two tissues has impedances $Z_1 = 1.6 \times 10^6$ and $Z_2 = 1.8 \times 10^6 \,\mathrm{kg}\,\mathrm{m}^{-2}\mathrm{s}^{-1}$. Calculate the intensity reflection coefficient. (PPP) Rialleol .on Rianeel

aneel Physics

Praineel Philips

Working and Answer:
$$R = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2 = \left(\frac{0.2 \times 10^6}{3.4 \times 10^6}\right)^2 \approx 0.0035$$

Phis

P. r. ath.

Praineel Physics

PINASICS

13. Explain how MRI creates an image of internal body structures. (PPPP)

Working and Answer:

It uses the magnetic properties of hydrogen nuclei. A strong magnetic field aligns spins, radiofrequency pulses disturb this, and the emitted signals are detected and used to form an image.

14. Describe how an image is formed using A-scan ultrasound. (PPPP)

Working and Answer:

Single-direction pulses are reflected by boundaries; the time delay gives distance, and amplitude reflects the nature of the boundary.

raineelPinis Johnson er $40\,\mu$ 15. Calculate the distance to a boundary if an ultrasound pulse returns after $40\,\mu\mathrm{s}$. Speed of sound = 1.5×10^3 m/s. (PPPP)

Working and Answer:

Praineel Philipsics

her:
$$d = \frac{vt}{2} = \frac{1.5 \times 10^3 \times 40 \times 10^{-6}}{2} = 0.03 \,\text{m}$$

Produced Philips

on is

Physics

Praineel Philipsics

16. A CT scanner completes one rotation in 0.4 s and captures 1000 images per rotation. What is the imaging rate? **(PPPP)**

Working and Answer:

Rate =
$$\frac{1000}{0.4}$$
 = 2500 images/s

17. Calculate the energy of an X-ray photon with frequency $5.0\times10^{18}\,\mathrm{Hz}$. (PPPP)

Working and Answer:

$$E = hf = 6.63 \times 10^{-34} \times 5.0 \times 10^{18} = 3.32 \times 10^{-15} \,\mathrm{J}$$

18. A patient receives a dose of 1.5 mGy over 0.02 m². Calculate the total energy absorbed. (PPPP)

Rivar

Praincel Philip

Prancel Physics

Physics

Alle el Pinis ei ce

Energy = Dose × Mass
$$\Rightarrow$$
 $D = 1.5 \times 10^{-3} \,\text{J/kg}$ of tissue: $E = 1.5 \times 10^{-3} \,\text{J}$

Working and Answer: Assuming 1 kg of tissue: $E = 1.5 \times 10^{-3} \,\mathrm{J}$

Praine Charles

R. r. allie

19. An X-ray beam loses 70% of its intensity through a body. What is the ratio I/I_0 ? (PPPP)

Working and Answer:

$$I/I_0 = 0.30$$

20. Calculate the impedance of a tissue with density 1000 kg/m³ and sound speed 1500 m/s. (PPPPP)

Working and Answer:

$$Z = \rho c = 1000 \times 1500 = 1.5 \times 10^6 \,\mathrm{kg}\,\mathrm{m}^{-2}\mathrm{s}^{-1}$$